
Why I am learning a new
programming language -
and why you should too!
An introduction to 
“Concurrent programming in Rust”

by Dr. Michael O. Distler

Mainz, 8 January 2019

special lecture as part of “Introduction to HPC Programming”  
(Dr. Bernd-Peter Otte)

1

Content

• Introduction - Moore’s Law

• Functional Programming

• Introduction to Rust

• Concurrency in Rust by example

2

42 Years of Microprocessor Trend Data

https://www.karlrupp.net/blog/3

What about the future?
• Well, frequency and power will not experience any

significant changes.

• Further improvements in instructions per clock may
slightly increase single-threaded performance further,
but not by a big margin.

• Transistor counts and number of cores are the two
interesting quantities: 
How long can we keep Moore's Law going?

• We will (probably) see an increase in the number of
cores in proportion to the number of transistors.

•☞ massively parallel algorithms are required
4

Programming Paradigms
• Structured/Procedural

• Object-Oriented Programming

• Functional Programming

• …

Python Paradigms

• Structured - Functions, loops, conditionals

• OOP - Classes, objects, methods

• FP - ??? functions ???
5

"Uncle" Bob Martin - "The Future of Programming"

• Structured Programming: 
 Don't use unrestrained GOTOs

• Object Oriented Programming: 
 Don't use pointers to functions

• Funtional Programming: 
 Don't use assignment

6

"If we have made any advances in software since
1945 it is almost entirely in what not to do”

YouTube

https://youtu.be/ecIWPzGEbFc

What is wrong with assignment?

State

Door.open = true
Door.open = false

coding = "awesome"
coding = coding + "!!"

7

What is wrong with assignment?

Side-effects

names = ['Jan', 'Kim', 'Sara']

def double_name():
 for (i, name) in enumerate(names):
 names[i] = name + name
 print(names)

prints out: ['JanJan', 'KimKim', 'SaraSara']

8

Problems with state

• Race conditions

• Complexity

• Unpredictability

9

Race conditions

groceries = ["apple", "banana", "orange",
 "strawberries", "cherries"]
basket = []

def get_groceries():
 for item in groceries:
 if item not in basket:
 basket.append(item)
 print(basket)

10

Unpredictable results

x = 1

def times_two():
 x = x*2

print(times_two())
=> 2

print(times_two())
=> 4

11

stateless
x = 1

def times_two():
 x = x*2

12

 def times_two(x):
 return x*2

 times_two(1)

NO STATE means:
• Immutability
• Predictability: f(x)==f(x)

lecture02: calculate !

#include <stdio.h>

#define f(A) (4.0/(1.0+A*A))
const int n = 1000000000;

int main(int argc, char* argv[])
{
 int i;
 double w, x, sum, pi;

 w = 1.0/n;
 sum = 0.0;
 for (i=0; i<n; i++) {
 x = w * ((double)i + 0.5);
 sum = sum + f(x);
 }

 printf("pi = %.15f\n", w*sum);

 return 0;
}

13

What is the 
problem?

⇡ =
Z 1

0

4

1 + x

2
dx

1

lecture02: calculate !

#include <stdio.h>

#define f(A) (4.0/(1.0+A*A))
const int n = 1000000000;

int main(int argc, char* argv[])
{
 int i;
 double w, x, sum, pi;

 w = 1.0/n;
 sum = 0.0;
 for (i=0; i<n; i++) {
 x = w * ((double)i + 0.5);
 sum = sum + f(x);
 }

 printf("pi = %.15f\n", w*sum);

 return 0;
}

14

const N: usize = 1_000_000_000;
const W: f64 = 1f64/(N as f64);

fn f(x: f64) -> f64 {
 4.0/(1.0+x*x)
}

fn main() {
 let mut sum = 0.0;

 for i in 0..N {
 let x = W*((i as f64) + 0.5);
 sum = sum + f(x);
 }

 println!("pi = {}", W*sum);
}

lecture02: calculate !

15

const N: usize = 1_000_000_000;
const W: f64 = 1f64/(N as f64);

fn f(x: f64) -> f64 {
 4.0/(1.0+x*x)
}

fn main() {

 let mut sum = 0.0;
 for i in 0..N {
 let x = W*((i as f64) + 0.5);
 sum = sum + f(x);
 }

 println!("pi = {}", W*sum);
}

const N: usize = 1_000_000_000;
const W: f64 = 1f64/(N as f64);

fn f(x: f64) -> f64 {
 4.0/(1.0+x*x)
}

fn main() {

 let sum : f64 = (0..N)
 .into_iter()
 .map(|i| f(W*((i as f64)+0.5)))
 .sum::<f64>();

 println!("pi = {}", W*sum);
}

stateful ☞ bad functional ☞ good

lecture02: calculate !

16

extern crate rayon;

const N: usize = 1_000_000_000;
const W: f64 = 1f64/(N as f64);

fn f(x: f64) -> f64 {
 4.0/(1.0+x*x)
}

fn main() {
 use rayon::prelude::*;
 let sum : f64 = (0..N)
 .into_par_iter()
 .map(|i| f(W*((i as f64)+0.5)))
 .sum::<f64>();

 println!("pi = {}", W*sum);
}

functional program ☞ 
multithreading is almost trivial

const N: usize = 1_000_000_000;
const W: f64 = 1f64/(N as f64);

fn f(x: f64) -> f64 {
 4.0/(1.0+x*x)
}

fn main() {

 let sum : f64 = (0..N)
 .into_iter()
 .map(|i| f(W*((i as f64)+0.5)))
 .sum::<f64>();

 println!("pi = {}", W*sum);
}

!

!
!

writing safe concurrent code is,  
at present, rocket science - or is it ???

17
https://bholley.net/blog/

Rust (programming language) 
From Wikipedia, the free encyclopedia

18

Rust is a systems programming language

• with a focus on safety, especially safe concurrency,

• supporting both functional and imperative paradigms.

Rust is syntactically similar to C++,

• but its designers intend it to provide better memory
safety while still maintaining performance.

Rust won first place for "most loved programming
language" in the Stack Overflow Developer Survey in
2016, 2017, and 2018.

Rust (programming language) 
From Wikipedia, the free encyclopedia

19

• Rust was originally designed by Graydon Hoare at
Mozilla Research (~2010), with contributions from
Dave Herman, Brendan Eich, and many others.

• Version 1.0 stable in May 2015

• Its designers have refined the language through the
experiences of writing the Servo web browser layout
engine and the Rust compiler.

• The compiler is free and open-source software, dual-
licensed under the MIT License and Apache License 2.0.

Rust’s Buzzwords

• Safety, Speed, Concurrency

• Memory safety without garbage
collection

• Zero-cost abstractions

• Hack Without Fear

20

Aside: Safety & GC

• Memory must be reused

• C: “Just follow these rules perfectly, you’re smart”

• Java, JS, etc: “Wait a minute, I’ll take care of it”

• Rust: “I’ll prove correctness at compile time”

21

What Rust has to offer

• Strong safety guarantees... 
No seg-faults, no data-races, 
expressive type system.

• ...without compromising on performance. 
No garbage collector, no runtime.

• Goal: 
Confident, productive systems programming

22

What’s concurrency?

In computer science, concurrency is
a property of systems in which
several computations are executing
simultaneously, and potentially
interacting with each other.

23

// What does this print?
int main() {
 int pid = fork();
 printf("%d\n", pid);
}

Concurrency is hard!

• Data Races

• Race Conditions

• Deadlocks

• Use after free

• Double free

24

Exploitable

What’s safety?

25

void example() {
 vector<string> vector;
 // ...
 auto& elem = vector[0];
 vector.push_back(some_string);
 cout << elem;
}

elem
vector
…

[0]
[1]

Mutation

Aliased Pointers

Rust’s Solution

26

Rust’s Solution
Ownership/Borrowing

No runtime Memory
Safety

No data
races

C++ GC

Ownership

27

fn main() {
 let mut v = Vec::new();
 v.push(1);
 v.push(2);
 take(v);
 // ...
}

fn take(v: Vec<i32>) {
 // ...
}

v 1
2move ownership

Ownership

28

fn main() {
 let mut v = Vec::new();
 v.push(1);
 v.push(2);
 take(v);
 v.push(3);
}

fn take(v: Vec<i32>) {
 // ...
}

error: use of moved variable v

Borrowing

29

fn main() {
 let mut v = Vec::new();
 push(&mut v);
 read(&v);
 // ...
}

fn push(v: &mut Vec<i32>)
{
 v.push(1);
}

fn read(v: Vec<i32>) {
 // …
}

Safety in Rust

• Rust statically prevents aliasing + mutation

• Ownership prevents double-free

• Borrowing prevents use-after-free

• Overall, no segfaults!

30

Smart pointer
… are data structures that not only act like a
pointer but also have additional metadata and
capabilities. 
Examples:

• Vec<T>

• Box<T> for allocating values on the heap

• Rc<T>, a reference counting type that enables
multiple ownership

31

Iterators and Closures

Functional Language Features:

• Closures, a function-like construct you
can store in a variable

• Iterators, a way of processing a series of
elements

32

I did not talk about …
• Testing

• Error Handling

• Generic Types, Traits, Lifetimes

• Cargo and crates.io

• Futures

• Unsafe or advanced Rust

• …
33

Further reading and viewing
• The Rust Programming Language 

https://doc.rust-lang.org/stable/book/

• Vorlesung „Programmieren in Rust“, Universität
Osnabrück, Wintersemester 2016/17. 
https://github.com/LukasKalbertodt/programmieren-in-rust

• https://www.karlrupp.net/2015/06/40-years-of-
microprocessor-trend-data/

• https://youtu.be/ecIWPzGEbFc

• https://youtu.be/6f5dt923FmQ

34

https://github.com/LukasKalbertodt/programmieren-in-rust
https://youtu.be/ecIWPzGEbFc
https://youtu.be/6f5dt923FmQ

Installing Rust

• rustup: the Rust toolchain installer 
https://github.com/rust-lang-nursery/
rustup.rs

curl https://sh.rustup.rs \  
 -—silent --output rustup-init.sh  
sh rustup-init.sh

35

https://github.com/rust-lang-nursery/rustup.rs

