
Slowcontrol for the primary
target of the PANDA

hypernuclear experiment

von

Nicolas Rausch

Bachelorarbeit in Physik
vorgelegt dem Fachbereich Physik, Mathematik und Informatik (FB 08)

der Johannes Gutenberg-Universität Mainz
am 14. Januar 2016

1. Gutachter: Prof. Dr. Josef Pochodzalla
2. Gutachter: Prof. Dr. Frank Maas

Ich versichere, dass ich die Arbeit selbstständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Mainz, den [Datum] [Unterschrift]

C O N T E N T S

1 I N T R O D U C T I O N 4

2 T H E P A N DA H Y P E R N U C L E A R E X P E R I M E N T 5
2.1 Experimental Setup 6

3 P I E Z O M OTO R S 10

4 C O N T R O L S Y S T E M 15
4.1 Prototype setup 15

4.1.1 BeagleBone 16
4.2 Software 17

4.2.1 EPICS 17
4.2.2 State Notation Language 20
4.2.3 Control System Studio 24

5 P E R F O R M A N C E O F T H E C O N T R O L S Y S T E M 26

6 S U M M A RY A N D O U T L O O K 31

7 A P P E N D I X 32

3

1
I N T R O D U C T I O N

This thesis examines the development of a control system for the primary tar-
get of the PANDA1 hypernuclear experiment. PANDA will be situated at the fu-
ture nuclear research facility FAIR2 in Darmstadt and uses an antiproton beam
for the creation and high precision γ spectroscopy of double Λ hypernuclei.
These investigations provide information about the interaction of Λ hyperons
necessary in the progress of a complete understanding of the baryon baryon
interaction.
This experiment needs a complex target system. The primary, internal, target
is mounted inside a modified beam pipe of the storage ring. During a mea-
surement the primary target has to be moved within the beam. This movement
must be very precise. Therefore the target is mounted on piezo motors.
This study focuses on the control of these motors using the EPICS3 frame-
work which is foreseen for the PANDA slow control system. A prototype of the
system is developed and necessary properties for secure measurements are
tested.
The first part of this thesis explains the basics of the hypernuclear experiment.
Thereby the primary target is focused. In the following sections details on the
functionality of the used piezo motors and the CSS4 frameworks are given. A
single board computer for the control of the motors is used. The main part
shows the progress done in hardware and software to steer the motors and
control them via an EPICS based graphical user interface. Measurements
with this setup are presented and finally a conclusion and outlook, including
important adjustments on the system are given.

1 Anti-Proton Annihilation Darmstadt
2 Facility for Anti-Proton and Ion Research
3 Experimental Physics and Industrial Control System
4 Control System Studio

4

2
T H E P A N DA H Y P E R N U C L E A R E X P E R I M E N T

PANDA is one of the major projects of the FAIR facility, an extension to the
already existing GSI1 in Darmstadt. It studies the interactions of antiprotons
and fixed target protons or nuclei in a momentum range of 1 . 5-1 5GeV/c by
using the high energy storage ring HESR [1]. There is a maximum number of
1 0 1 0 antiprotons in the HESR.

Figure 1: The GSI and the future FAIR facility in Darmstadt.

The PANDA hypernuclear experiment studies the structure of double Λ hy-
pernuclei. A hypernucleus consists of nucleons (protons and neutrons) and at
least one hyperon. Hyperons are baryons that consist of at least one strange
quark. Since the Λ particle has an up, down and a strange quark it has a
strangeness of − 1 .
The production of double Λ hypernuclei at PANDA proceeds in two steps, see
figure 2. First 3 GeV/s antiprotons of the HESR beam interact with protons of
the primary, internal, carbon target creating Ξ− via the reaction:

p̄ + p → Ξ− + Ξ̄ + (1)

1 Helmholtzzentrum für Schwerionenforschung

5

2.1 E X P E R I M E N TA L S E T U P

Those particles then leave the primary target and are stopped and captured
in absorber layers of the secondary active target. With the reaction

Ξ− + p → Λ + Λ + 2 8 M e V (2)

within a secondary target nucleus a double Λ nucleus is created. This nucleus
is in a highly excited state, that deexcites into its ground state by emitting
neutrons and photons. If the two Λ decay mesonically it emits two pions, that
will be detected in the detector of the secondary target and are used as a
trigger for the creation of a double Λ hypernucleus.

Figure 2: Illustration of the production process of the hypernuclear experiment.
The antiprotons interact with the primary target. The created Ξ− are
captured by a secondary target outside of the beampipe. Hypernu-
clei are produced in this target. They deexcite by emitting neutrons
and photons. These photons are detected and measured using ger-
manium detectors [2].

2.1 E X P E R I M E N TA L S E T U P

The PANDA hypernuclear setup is illustrated in figure 3. It shows the three
important parts, primary and secondary target, and the germanium detectors,
that are needed for the creation and detection of double Λ hypernuclei.

6

2.1 E X P E R I M E N TA L S E T U P

Figure 3: The experimental setup of the PANDA hypernuclear experiment. [2]

The focus of this thesis is the positioning of the primary target in the beam.
For that purpose the target is mounted on piezo motors. During a measure-
ment the primary target could be damaged and hence needed to be replaced.
Therefore several spare targets are foreseen. The motors holding the primary
targets are mounted on a carriage, movable parallel to the beam axis, to en-
able the replacement of the damaged targets. Todays assumption is that five
targets will be mounted on the sled. The piezo motor drives the target through
a slit in the absorber material of the secondary target into the beam. This
requires that the sled can only be moved when all targets are positioned out
of the beam to prevent collisions inside the target vacuum chamber. The con-
trol system must ensure this safety behaviour, because otherwise the system
could break and the whole experimental setup needed to be opened and re-
paired. The number of beam particles in a storage ring decreases over time.
This is caused by interactions of beam particles with the target nuclei. In the
HESR the beam is assumed to have a gaussian shape. For the hypernuclear
experiment only a small fraction of the beam may hit the target to achieve the
foreseen interaction rate of 4 ∗ 1 0 6 /s in the measurement time. A movable
primary target allows to keep the interaction rate constant by moving the target
closer to the center of the gaussian when the total number of antiprotons in
the beam decreases. Figure 4a shows one measurement cycle. This includes
the measurement time, the time to refill the HESR and the beam preparation
time.

7

2.1 E X P E R I M E N TA L S E T U P

(a) Calculation of the luminosity over time and the number of anti-protons during the
experiment. [2]

(b) Calculation of the target position during a measure process. The target needs to
be moved according to the curve [2].

Looking at the movement plot, the target movement after a measurement
time of 2 0 0 0s increases drastically so that a misplacement leads to a high
variation of the interaction rate. Hence it is foreseen to measure for 2 0 0 0s. In
this time the target needs be moved for 0 . 6mm. To prevent sudden variations
in luminosity the target has to be moved as close to the curve as possible. This
requires a very precise positioning of the piezo motors. For a better illustration
of the sled and motor setup figure 5 gives a detailed illustration on the specific
setup.

8

2.1 E X P E R I M E N TA L S E T U P

Figure 5: View inside the target chamber. The primary target is placed on the
piezo motors, that are mounted on the sled to allow the replacement
of damaged targets [3].

9

3

P I E Z O M OTO R S

The PANDA hypernuclear experiment requires very small, vacuum and radia-
tion resisting motors than can position the primary target very precisely in the
beam. Those requirements are fulfilled by piezo motors and hence used in the
setup. For the prototype of the control system the PiezoWave of the company
PiezoMotorTM [4] was used.

Figure 6: The PiezoWave motors with a total length of 1 4mm, width of
7 . 2mm and a stroke of 8mm [4].

Even though the PiezoWave are not specified for vacuum conditions they
are well suited for setting up a logic for the control system and testing the
control of piezo motors in general. The company PiezoMotorTM also offer
motor models that can be used in vacuum applications. In contrast to other
step motors, piezo motors dont rely on grease, which makes them useful for
vacuum conditions.
In figure 7 a sketch of the functional principle of the PiezoWave is shown.

10

P I E Z O M OTO R S

Figure 7: Sketch of the essential parts of the PiezoWave. The left one shows
a not activated piezo and the right is electrically activated. The drive
element is the piezo itself and vibrates at an ultrasonic frequency
when voltage is applied. The drive pad transfers the movement from
the piezo elements to the drive rod [4].

The motors offer direct linear drive and have a very low power consumption.
When the piezo motor is activated, the piezo elements and the drive pads
move, which then causes the drive rod to move 8a. After the first motion cycle
8b, the drive pads have moved as far to the left as possible. In the third stage
8c the drive pads are lifted from the drive rod and enable the piezo elements
to reposition the drive pad, so that a new motion cycle is possible 8d.

(a) (b)

(c) (d)

Figure 8: Schematic of the functionality of the piezo motors [4].

The motion is transferred by contact friction from the drive pads to the drive
rod. When the drive pads push the drive rod the motor moves. The average
step length is about 1 µm. The drive frequency is up to 1 0 0kHz, which makes
the motor reach up to 1 5 0mm/s at full speed 1. Since the movement of
the motor is based on friction, there is no need to keep the motor electrically
activated in order to hold its position. When a large force is applied to the drive
rod, it will slide without damaging the motor. This makes the piezo motors very
durable [5]. Table 1 shows typical motor characteristics.

11

P I E Z O M OTO R S

Table 1: Typical motor characteristics [4]

Speed at no load 1 5 0mm/s
Speed at load 5 0mm/s
Stall force 0 . 1 5N
Holding force 0 . 3 0N
Stroke 8mm
Step length, average 0 . 5-1 µ m
Life time, cycles 8mm > 1 0 0 0 0 0

The basic drive electronics of the motor is very simple. Each piezo element
consists of two independent parts and can be seen as two capacitors. A motor
has two elements and from an electrical point of view they are parallel to each
other.
Figure 9 illustrates the electrical interpretation of the motors. The phase shift
of A and B determines the movement direction. So in order to change the
direction of the movement the phase shift needs to be reversed. Typically two
9 0 ◦ phase shifted sinusoidal signals are applied.C1 and C3 are part of the
the upper drive element from figure 7 and C2 , C4 belong to the lower drive
element, see figure 11. One can say that C1 and C2 are left of the drive pad
and C3 and C4 are right of the drive pad.

Figure 9: Electrical interpretation of the piezo motors [4].

In 10 typical values for the phase voltages for A and B, as well as for GND
and Vcc are illustrated. For a better understanding of the functional principle
the values of figure 9 are taken and the different voltages applied to the capac-
itors are explained.

12

P I E Z O M OTO R S

Figure 10: Typical phase voltages for the operating motors [4]. Two sinusoidal
signals for phase A and phase B with amplitudes of the control
voltage Vcc. The peak voltages of the phases should not be more
than 2 V higher than Vcc and not more than 2 V below GND.

When phase A changes from 4V to 8V the voltage for C1 decreases from
4V to 0V. So the part of the piezo element belonging to C1 returns into its
initial position. Meanwhile the voltage on C4 increases from − 4V to 0V. The
part of the piezo element belonging to C4 changes into its initial position, too,
but in opposite direction to C1 . Hence the parts of the piezo elements that are
directly opposite of each other move in opposite directions.

Figure 11: The piezo elements with the movement direction for + 9 0 ◦ phase
shift (left) and − 9 0 ◦ phase shift (right). C1 to C4 show the piezo
parts that belong to the capacitors used in the electrical interpreta-
tion of the PiezoWave.

As explained above the drive pad nudges the drive rod only for half of the
motion cycle. So when there is a phase shift of + 9 0 ◦ the right parts of the

13

P I E Z O M OTO R S

piezo elements move towards the drive rod and thereby nudge the drive rod
to the left and then are lifted from the drive rod. With a phase shift of − 9 0 ◦

the left parts of the piezo elements move towards the drive rod and thereby
nudge it to the right before they are lifted from the drive rod.

The easiest way to drive the motor is to send a pulse wave over an inductor
to the piezo element. This creates an LC circuit and a sine wave signal in the
piezo element. In our case the motor is driven via an compact driver PMWD10-
01, that is included in the demokit for the PiezoWave motors [6]. The compact
driver has six connections, control voltage Vcc, phase A voltage and phase
B voltage and GND for each of those. Phase A and phase B can be consid-
ered as F-signal and R-signal1, for forward and reverse direction. Applying
voltage on the F connector the motor drives forward as long as the signal is
applied2. If the motor is moved out completely and voltage is still applied to
the F connector, the piezo elements will keep operating, but the drive pads
no longer nudge the drive rod and instead slide over it. This situation must
not happen frequently, because the drive pads can get chafed over time and
might consequently lead to a broken motor.

1 In the codes B was used instead of R for Backward.
2 the drive length is only limited by the length of the drive rod

14

4

C O N T R O L S Y S T E M

4.1 P R OTOT Y P E S E T U P

Figure 12: Hardware connection of the piezo motors with a BeagleBone micro-
controller via the compact driver.

In figure 12 the prototype setup for the connection of the piezo motors with the
BeagleBone Black (see 4.1.1) is given. Two motors are connected using the
flexible circuit board and the compact driver (see figure 22 for the schematic
in the appendix). The compact driver‘s control voltage Vcc is connected to
a power supply applying 1 2 V . All GND, including the BeagleBone Black,
are connected to the power supplies GND. The F and R pins of the compact
drivers are connected to separate GPIO1 of the BeagleBone for each motor.

1 General-purpose input/output

15

4.1 P R OTOT Y P E S E T U P

Figure 13: Block diagram for the hardware connection of the prototype.

The GPIO provide 3 . 3 V , when configured as an output. This allows to
drive the motor in the desired direction by setting the digital pin.

4.1.1 BeagleBone

The BeagleBone Black is a single-board computer, based on a Texas Instru-
ments ARM Cortex-8 processor2 running at 1 GHz with 5 1 2 MB RAM. It
runs a Linux kernel and provides an Ethernet and USB Port. Additionally the
boards offers 6 5 GPIO and serial and I2C connection as well as HDMI [7].
This allows the control of the planned five motors as well as the connection
of further data sources. The board can be upgraded with capes, that offer
additional features like additional GPIOs, microcontrollers or relays.

Figure 14: The single-board computer BeagleBone Black. [7]

2 Sitara AM3358

16

4.2 S O F T WA R E

4.2 S O F T WA R E

The PANDA detector control system is foreseen to use the EPICS3 framework.
Therefore it is used to control the motors via the BeagleBone Black. The IOC4

for the motors is inplemented on the BeagleBone Black while the graphical
user interface is built and running on a desktop PC. Both are connected via
Ethernet.

4.2.1 EPICS

EPICS is a collection of Open Source software tools, libraries and applications
used worldwide in control systems for particle accelerators, telescopes and
other large scientific experiments. The installation of the necessary software
components of EPICS is done by using precompiled packages5. The required
packages are:

• the basic EPICS package (epics-dev)

• the asynchronous driver (asyn-dev)

• the driver for stream base communication (stream-dev)

• the driver to control GPIO pins via EPICS (devgpio-dev)

• the add-on for the State Notation Language (seq-dev)

The creation of a new IOC is done by using the included tool makeBaseApp6.
This creates a basic structure which can be filled. The IOC is started by run-
ning the start up script (st.cmd), for more information see the code in the
appendix 7.3. [8] In a database (*.db) file all the process variables (PV) are
defined as so called records. This database file is newly loaded every time
the IOC is started.
The following examples shows how to setup a record in the database file.

record(bo, "PANDAHYP:BBB2:PMF1") {
field(DTYP, "devgpio")
field(OUT, "@$P8_8 H ")
field(ZNAM, "off")
field(ONAM, "on")

}

In the first line the type and the PV name of the record is defined, which in
this case is an binary output that can be accessed via the PV name PAN-
DAHYP:BBB2:PMF1. The DTYP field describes the device type of this record.

3 Experimental Physics and Industrial Control System
4 Input Output Controller
5 http://panda-service.gsi.de/repo/
6 MakeBaseApp creates directories, copies template files into the directories, and expands

macros in the files.

17

4.2 S O F T WA R E

In this case a GPIO of the BeagleBone. The OUT field adresses the specific
GPIO and whether it is used as active low L or active high H. The other two
fields ZNAM and ONAM contain the string that corresponds to the 0 and 1
state. In the given example the record refers to the F-signal of the piezo motor
1 that is connected to GPIO 8 on P8 of the BeagleBone Black. Within the IOC
shell the value of this record can be set by using the command:

dbpf "<record.field>" "<value>" #database put field

For this specific example:

dbpf PANDAHYP:BBB2:PMF1 1

If no field is given in the PV name the command automatically adresses the
value field, e.g. the value of the record itself. To ask for the current value of a
record one uses the command:

dbgf "<record.field>" "<value>" #database get field

This prints the current value of the addressed field. In this case it would return
1 after using dbpf PANDAHYP:BBB2:PMF1 1. Setting the recordvalue to 1 ,
sets the GPIO to its high level and the motor drives forward. To drive the motor
in reverse direction the value of the record for PANDAHYP:BBB2:PMF1 needs
to be set to 0, because otherwise the movement signal would be applied to
both phase inputs of the compact driver not resulting in any movement. After
setting the value of the forward direction to 0 , the record that corespondents
to the reverse direction can be addressed.

record(bo, "PANDAHYP:BBB2:PMB1") {
field(DTYP, "devgpio")
field(OUT, "@$P8_10 H ")
field(ZNAM, "off")
field(ONAM, "on")

}

Using

dbpf PANDAHYP:BBB2:PMB1 1

makes the motor drive in reverse direction. To enable the control of more
connected motors one needs to set up a record for each of them. For this it
is possible to create templates of records that are used in a substitution file to
create multiple similar PVs. The template for such records looks like this:

18

4.2 S O F T WA R E

record(bo, "PANDAHYP:BBB2:PM${DIRECTION}${NUMBER}") {
field(DTYP, "devgpio")
field(OUT, "@${PIN} H ")
field(ZNAM, "off")
field(ONAM, "on")

}

This template can be used to create the necessary amount of PVs in the
database of the IOC depending on the number of motors to control. The
substitution file for the motor records is given below.

file "../../db/prepiocNew.db"
{
pattern{user, DIRECTION,NUMBER,PIN}
{rausch,F,1,P8_8}
{rausch,B,1,P8_10}
{rausch,F,2,P8_11}
{rausch,B,2,P8_13}
}

The first line states which database file is loaded. The third line defines the
names of the variables that are used in the database file. The following lines
are used to set the values for the directions and the pins of the connected mo-
tors. Another important record type is the calcoutrecord. This record enables
the calculation of data values.

record(calcout, "PANDAHYP:BBB2:DELAY1") {
field(SCAN, "1 second")
field(INPA, "")
field(INPB, "1000")
field(CALC, "A/B")

}

The SCAN field gives the periodic interval in which a record is processed,
which in this example means that every 1 second the value of the record is
recalculated. This can be set to shorter times depending on the nature of the
signal that has to be calculated. The inputs of the calculation are given in the
INP fields. Those can be a value from another record or a constant. The CALC
field contains the formula in which the inputs are processed. For example
using dbpf PANDAHYP:BBB2:DELAY1.INPA 1000 changes the value to 1 .
EPICS offers many other record types like binary input, analog in and analog
out, which are all referenced in the EPICS manual [9]. The binary output and
the calcout record are the only ones needed for the control system as it is
used right now.
At this point all the commands need to be given by hand and the stopping
of the motor has to be set manually by setting the value field of the specific
record to 0 . EPICS offers a tool to automate and apply a logic to an IOC.

19

4.2 S O F T WA R E

4.2.2 State Notation Language

This tool is the State Notation Language (SNL). It allows to programm sequen-
tial operations in a real time control system [10]. It is based on the concept of
a finite state machine which can be visualized by a state transition diagram.
The following figure 15 shows a state diagram for driving a motor in forward
direction and declare a step size by setting a delay time after which the GPIO
is automatically set back to 0 .

Figure 15: A state transition diagram for the forward movement of motor1 . It
includes two states. One initial stop state, which belongs to the
time the motor is not moving, and the drive state.

The state machine in figure 15 is very simple. By setting the run button to
1 the stop state transitions into the drive state, while setting the GPIO that
belongs to the F-signal of the driver board to high. So the initial state is the
stop position and by pushing the run button the state transitions. The only
condition for the motor to be driven forward is that the value of the record
corresponding to the run button is set to 1 . The condition to change from
drive state to stop state is a delay timer, that can be set via a calcout record.
On entering the drive state the delay timer starts running. After that time
the commands given within the drive state are processed. In our case the
command is to put the GPIO of the F-signal back to 0 and thus stopping the
motor. After that the motor is in the initial state again. It is important to remark
that the commands are made during a transition from one state to another and
not on entering one.
The state diagram that shall be used for the PANDA setup includes important
requirements that need to be checked every time before the motors drives
forward. There are three conditions for driving the motor forward and two
conditions for driving the motor backwards in this motor setup. In order to
drive the motor forward, one condition is that every other motor is in initial
position, e.g. not driven out at all. The other conditions will be explained when
going through the code for driving motor1 forward.
In figure 16 the state diagram for the PANDA control system prototype is given.
The example includes only two motors, but the code can be easily extended
to five or even more control units.

20

4.2 S O F T WA R E

Figure 16: The state transition diagram for the PANDA control system, includ-
ing two motors. For each motor there are two separate state dia-
grams with two states each. The values going in to the state circles
are the conditions that need to return true in order to transition into
the next state. During the transition the command showing on the
arrow between the states is processed.

The complete state machine for two motors has four separate two state
diagrams. For driving the motors forward, there are three conditions going
into the stop state and one condition going into the drive state. For backward
direction there are only two conditions needed for the stop state, but the rest
is the same as in forward direction. The conditions are a button corresponding
to a record value that needs to be 1 , a wait timer that runs for 1 second every
time the stop state is entered and a third condition that belongs to the position
of the other motors. In this case it is just the position of motor2 . For now
the position for each motor is only measured by separate calcout records that
count every step the motors make. If a motor makes a step forward it adds
+ 1 and if the motor makes a step back it adds − 1 to the current calcout
value. Only if the value of the calcout records of all other motors is 0 the
motor may be driven forward. This condition is not used for driving the motors
backwards, first of all because if somehow more motors are driven out at once,
it is important to drive them back simultaneously and reset the system. When
all those three conditions are fulfilled the motor drives in forward direction until
the delay timer of the drive state has finished and sets the value of the GPIO
back to 0 .

21

4.2 S O F T WA R E

To illustrate how the SNL works, the code for driving the motor1 forward
is explained. At the beginning of the program all the variables need to be
declared and if used as process variables assigned to specific records.

1program sncprepioc
2int V1;
3assign V1 to "PANDAHYP:BBB2:CSSF1";
4monitor V1;
5int F1;
6assign F1 to "PANDAHYP:BBB2:PMF1";
7monitor F1;
8float T1;
9assign T1 to "PANDAHYP:BBB2:DELAY1";
10monitor T1;
11int C1;
12assign C1 to "PANDAHYP:BBB2:COUNTF1";
13monitor C1;
14float T1;
15assign T1 to "PANDAHYP:BBB2:DELAY1";
16monitor T1;
17int A1;
18assign A1 to "PANDAHYP:BBB2:STEPS1";
19monitor A1;
20int i1=1;
21int E1=1;
22####MOTOR1FORWARD###
23ss F1 {
24state stop {
25when (V1 != 0 && delay(1) && CN2 == 0) {
26C1=E1;
27pvPut(C1);
28E1++;
29if(i1 < A1) {
30F1=1;
31pvPut(F1);
32i1++;
33}
34else {
35F1=1;
36pvPut(F1);
37V1 = 0;
38pvPut(V1);
39i1=1;
40}
41} state drive
42}
43state drive {
44when (delay(T1)) {
45F1 = 0;
46pvPut(F1);
47} state stop
48}
49}

22

4.2 S O F T WA R E

Within a single program one can have several state transition diagrams.
Each one is referred to as a state set and a name (line 2 3). Every state starts
with a when statement, in which the conditions are defined under which the
state transitions into the next state. The initial state is state stop with three
conditions (line 2 5). The conditions are linked by an AND logic. When all
three conditions return true the next bracket is entered. Here the first three
commands refer to the calcout record that counts the number of steps (lines
2 6 − 2 8). By using a conditional if-else statement it is possible to let the
motor drive a certain number of steps (lines 2 9 − 4 0). A1 refers to a calcout
record and its value is the number of steps the motor drives. If the if condition
is true the GPIO of the F-signal of motor1 is set to high, by putting F1=1 and
the step counter i1 is increased by 1 . Then the drive state is entered (line 4 1).
Here the only when condition is a delay timer that can be defined by changing
the value of the record that refers to T1 (line 4 4). When the timer has finished
it returns true and the commands of state drive, to set F1=0 (lines 4 5 − 4 6)
and thus stop the motor, are processed. This delay time defines how long the
signal to move is applied to the motor and thus determines the length of one
step, so for shorter delay times shorter steps are made. After the delay has run
up and a single step is completed the stop state is reentered (line 4 7). Again
the delay timer of the stop state starts running and the other two conditions
are checked. This delay time determines the time between each step and can
be change to shorter or longer times depending on the application. The other
two conditions are still true and after 1 second the next step is taken. This
goes until the else statement is entered. Here the GPIO is set to high, as well,
but the value of the run button is put to 0 . So when the program enters the
stop state, the condition V1 != 0 does no longer return true and the motor
remains in its current position.
This example shows how the SNL works and that it is easy to include more
restrictions for state transitions. One condition that needs to be integrated in
the future is the position of the sliding bed. Furthermore it is important to have
an active hardware sensor that measures the position of the piezo motors. For
now their position can only be known from the calcout record that counts each
step. This counter relies on the software and thus is problematic to be used as
the only position reference. If you would change the motor position by hand,
the counter would not change, since it basically counts how often the transition
from state stop to state drive is made. When changing the motor position by
pulling the drive rod out or pushing it in, the software does not recognize this
modification.

23

4.2 S O F T WA R E

4.2.3 Control System Studio

The graphical user interface for the PANDA detector control system will be built
by using the Eclipse based Control System Studio (CSS). It is a collection of
tools to monitor and operate large scale control systems [11]. CSS includes
a channel access client to communicate to EPICS IOCs and read and access
their process variables. This makes it possible to show or change their values.
The program offers specific widgets like boolean buttons or text input and text
output fields. Those widgets can be linked to process variables and by that
make it possible to change the value of a record in our EPICS database from
CSS. The graphical user interface for the two motors can be seen in figure 17.

Figure 17: Graphical user interface for controlling two piezo motors. Motor2
can not be moved out, because motor1 is not in its initial position.
This is highlighted by the red light on the run button for motor2

The GUI includes text input fields for step length and the number of steps,
as well as an text output field for the current position of the motors and run
buttons for forward and backward direction. In the text input field for step
length the delay time of the drive state is declared and in the steps field you
define the maximum value of the if condition within the SNL program. When
the current position of a motor is not 0 the run button of the other motor for
forward direction lights up red to show that it is impossible to drive that one
forward. In CSS it is possible to assign rules to your widgets. The current
program includes rules that change the color of the light for the run buttons.

24

4.2 S O F T WA R E

When it is green the corresponding motor can be driven forward. When it is red
it is not possible to drive the motor forward, because the other motor is already
driven out. The rule checks the current position of the motors and works
similar to a state condition. The GUI also includes a reset button, that moves
every motor to its initial position and sets the value of the current position to
0 .

25

5

P E R F O R M A N C E O F T H E C O N T R O L S Y S T E M

The control system is able to steer and position the motors. The PANDA hy-
pernuclear experiment requires fine positioning of the primary target. Over a
certain time period the primary target needs to be moved closer to the center
of the beam. According to figure 4b the target needs to be moved for 0 . 6mm
in 2 0 0 0s to achieve the needed average reaction rate. Therefore the perfor-
mance of the control system is studied by using a USB microscope to measure
the length of single steps in both directions for different delay times. The mo-
tor is mounted on a metal plate with an attached scale of 1 c m with 0 . 5 m m
sections. Then the microscope is adjusted and a picture of the initial position
and one after each step is taken. This is done for four steps in both direction.
At first the influence of different delay times for the step length are discussed.
For each measurement a picture of the initial position and one after four steps
is combined into one, whereas the colours of the picture from the initial posi-
tion are inverted and made semitransparent to see both positions in the su-
perimposed pictures. The difference in the position of the end of the drive rod
is measured with the open-source image manipulation program GIMP 21, by
measuring the difference in pixels. A picture without the drive rod , showing
the metal scale, is used for calibration.

1 https://www.gimp.org/

26

P E R F O R M A N C E O F T H E C O N T R O L S Y S T E M

Figure 18: Calibration of the pixel to mm relation. The measured section is
0 . 5mm and was measured as 1 2 4 ± 5 pixels. The error is a
result of the resolution of the computer program.

This results to the length for 1 pixel of 0 . 0 0 4 ± 0 . 0 0 0 1 5mm 2. The
following pictures show the measurements for the longest and the smallest
delay time. Further pictures can be seen in the appendix.

(a) Delay time of 10ms (b) Delay time of 1ms

(c) Delay time of 1 · 10−1ms (d) Delay time of 1 · 10−2ms

Figure 19: Overlay of the start and ending positions of the motors. Four steps
forward from the initial point for different delay times

2 The error was calculated by dividing 0.5mm by 129px and 0.5mm by 119px. Subtracting the
results from each other and dividing it by 2.

27

P E R F O R M A N C E O F T H E C O N T R O L S Y S T E M

For each delay time the length of four steps are measured in pixel and then
multiplied with 0.004mm. Dividing the results by four gives us the length of a
single step for each delay time. The smallest step length is already achieved
at a delay time of 1 · 10−2ms, which results in 0.17mm for a single step. Mea-
surements were also made for a delay time of 10−3ms, but resulted in the
same step length of 0.17mm. Of course the measurements are influenced by
errors caused by the resolution of the microscope, the human eye and most im-
portantly the computer resolution when measuring the pixels. To keep those
errors small four steps were measured and not only one single step. In the
following table 2 the results of the different measurements are presented, in-
cluding errors. The error for measuring the pixels is estimated to ±5px, which
is ±0.02mm. For changing from px to mm the error needs to be calculated
via gaussian error propagation. p is the length in pixel, m is the length of one
pixel in mm and x is the final measured length in mm.

x = p ·m with ∆x =
√
(m∆p)2 + (p∆m)2 (3)

Delay Time Length of 4 steps Length of 1 step
10ms 5.33 ±0.20mm 1.33 ±0.05mm
1ms 1.18 ±0.05mm 0.30 ±0.01mm

0.1ms 0.94 ±0.04mm 0.23 ±0.01mm
0.01ms 0.66 ±0.04mm 0.16 ±0.01mm
0.001ms 0.68 ±0.04mm 0.17 ±0.01mm

Table 2: Length of the motor driven for different delay times.

The limitation in step length is not a property of the piezo motors, that have
an average step length of 0.5 to 1 µm [5], but rather a problem of the time the
BeagleBone needs to process a command from the SNL program. By using
an oscilloscope it was possible to find out that this minimal processing time is
1.2ms. So when the SNL program transitions into the drive state and the delay
condition returns true it takes 1.2ms until the GPIO is set back to 0. This was
investigated by taking pictures of different delay times with the oscilloscope.

28

P E R F O R M A N C E O F T H E C O N T R O L S Y S T E M

Figure 20: Measured voltage applied to the piezo motor with a delay time of
10ms, with a time scale of 5ms on the oscilloscope. Due to the
probe the voltage is 1/10 of the actual GPIO voltage. Here we
have about 330mV, where the actual voltage is 3.3V.

In picture 20 the voltage should be high for 10ms, but the figure clearly
shows that there are deviations of about 1.1ms. This deviation explains the
non linearity of step length compared to delay time given in table ??. Where
10ms result in roughly 11.1ms of voltage applied, 1ms results in roughly 2.5ms
(see figure 23 in the appendix. So when comparing the step length of 1.33mm
to 0.30mm the delay times are rather 11.1ms and 2.5ms. When looking at
smaller delay times and smaller scales, the amount of deviation becomes
clearer.

29

P E R F O R M A N C E O F T H E C O N T R O L S Y S T E M

Figure 21: Measured signal applied to the piezo motor with a delay time of
1 · 10−3ms, with a time scale of 1ms on the oscilloscope. This
picture shows jitter, for the same delay time there are variations of
0.4ms. For the voltage scale it is the same as in figure 20.

With a delay time of 1 · 10−3ms the BeagleBone is not able to switch the
GPIO in time and thus causes a limitation in the step length of 0.17mm each.
The BeagleBone can not switch the GPIO in less than 1.2ms and therefore it
is impossible to achieve shorter step length with this setup.
Another aspect in the oscilloscope recordings is jitter, which is caused be-
cause the system used is no real time system and thus the Linux scheduler
varies in the order of processing the commands. In figure 21 jitter causes a
variation of 0.4ms, which causes fluctuations in step length as well and can
not be neglected.
The aim of this study was to look whether or not the step length lies within
the range needed for the PANDA hypernuclear experiment. 0.17mm are def-
initely not accurate enough to achieve precise position of the primary target
in the beam. The target needs to be moved 0.6mm in 2000s, which would
be 3.5 steps with the current setup. That would lead to big variations in the
reaction rate every time the motor makes a step. The deviation of the target
position would be to big from the curve in figure 4b. Furthermore jitter causes
big variations in step length. Especially when using even smaller delay times,
the effect of jitter can become a big problem. Consequently the current setup
is not possible to position the target precisely enough to achieve constant lu-
minosity during the measurement.

30

6
S U M M A RY A N D O U T L O O K

In this thesis the development of a control system for the positioning of the pri-
mary target of the PANDA hypernuclear experiment was examined. Thereby
an EPICS based control system was created using a BeagleBone Black. The
targets are placed on piezo motors that are connected to the digital outputs
of the single board computer via a compact driver board. A graphical user
interface was build that enables the control of the piezo motors from any com-
puter that is connected to the same network as the BeagleBone Black. Using
a state machine it was possible to implement a control including safety mea-
sures for the movement of the motors. These conditions can be defined in a
program written in the EPICS implementation of the State Notation Language.
This ensures that no motor can be driven forward if any other motor is already
inside the beam and hence prevents collisions inside the vacuum chamber.
As of yet the conditions are all software based. An active feedback of the mo-
tor position is important for the final system to observe mechanically caused
misplacements of the targets. That could be a photo sensor that is added
on the flexible circuit board, but further investigations of this are necessary to
ensure a proper functionality under the conditions of the /Panda hypernuclear
experiment.
The major problem of the current setup is the limitation in step length due
to the BeagleBone Black. This was studied with an oscilloscope and it was
shown that the BeagleBone Black needs roughly 1.2ms to process an incom-
ing command. This is caused by the fact that the operation system installed on
the BeagleBone Black is no real time system and therefore the kernel varies in
scheduling commands instead of immediately processing the incoming com-
mands the moment they are invoked. This leads to jitter and prevents precise
measuring since the step length can vary. A real time system is needed to
solve this problem. This could be achieved in two ways. The first one is
to implement a real time kernel to the operation system of the BeagleBone
Black. These are available and use a special part of the processor, the pro-
grammable real-time unit, to process inputs and outputs on the digital interface.
This couldn’t be done in the thesis because changes to the EPICS implemen-
tation of the GPIO control is necessary for this. The second possibility would
be to use a microcontroller that is only used for direct control of the motors.
The logic would be implemented on the BeagleBone and both would commu-
nicate via a serial or I2C connection. This thesis could be used as a basis for
this implementation in the future.

31

7

A P P E N D I X

Figure 22: Schematic of the compact driver for the piezo motors [6].

Figure 23: Measurement for a delay time of 1ms.

The following script shows the database file. All records are defined in there. It
currently includes the records for the control of two motors and the necessary
records for the GUI with CSS.

32

A P P E N D I X

Code 7.1: The database file

1

2##Record substitution file##
3record(bo, "PANDAHYP:BBB2:PM${DIRECTION}${NUMBER}") {
4field(DTYP, "devgpio")
5field(OUT, "@${PIN} H ")
6field(ZNAM, "off")
7field(ONAM, "on")
8}
9

10####Motor1####
11

12###CSS F and B button###
13record(bo, "PANDAHYP:BBB2:CSSF1") {
14field(DTYP, "devgpio")
15field(OUT, "@P8_12 H ")
16field(ZNAM, "on")
17field(ONAM, "off")
18}
19record(bo, "PANDAHYP:BBB2:CSSB1") {
20field(DTYP, "devgpio")
21field(OUT, "@P8_14 H ")
22field(ZNAM, "on")
23field(ONAM, "off")
24}
25

26##Delay timer##
27record(calcout, "PANDAHYP:BBB2:DELAY1") {
28field(SCAN, "1 second")
29field(INPA, "")
30field(INPB, "1000")
31field(CALC, "A/B")
32}
33

34##Number of steps##
35record(calcout, "PANDAHYP:BBB2:STEPS1") {
36field(SCAN, "1 second")
37field(INPA, "")
38field(CALC, "A")
39}
40

41##Step counter##
42record(calcout, "PANDAHYP:BBB2:COUNTF1") {
43field(SCAN, "1 second")
44}
45

46record(calcout, "PANDAHYP:BBB2:COUNTB1") {
47field(SCAN, "1 second")
48}
49

50record(calcout, "PANDAHYP:BBB2:COUNTN1") {
51field(SCAN, "1 second")
52field(INPA, "PANDAHYP:BBB2:COUNTF1 CA")
53field(INPB, "PANDAHYP:BBB2:COUNTB1 CA")
54field(CALC, "A-B")
55}

33

A P P E N D I X

56

57

58

59####Motor2####
60

61

62###CSS F and B button###
63record(bo, "PANDAHYP:BBB2:CSSF2") {
64field(DTYP, "devgpio")
65field(OUT, "@P8_15 H ")
66field(ZNAM, "on")
67field(ONAM, "off")
68}
69

70record(bo, "PANDAHYP:BBB2:CSSB2") {
71field(DTYP, "devgpio")
72field(OUT, "@P8_17 H ")
73field(ZNAM, "on")
74field(ONAM, "off")
75}
76

77##Delay timer##
78record(calcout, "PANDAHYP:BBB2:DELAY2") {
79field(SCAN, "1 second")
80field(INPA, "")
81field(INPB, "1000")
82field(CALC, "A/B")
83}
84

85##Number of steps##
86record(calcout, "PANDAHYP:BBB2:STEPS2") {
87field(SCAN, "1 second")
88field(INPA, "")
89field(CALC, "A")
90}
91

92##Step counter##
93record(calcout, "PANDAHYP:BBB2:COUNTF2") {
94field(SCAN, "1 second")
95}
96

97record(calcout, "PANDAHYP:BBB2:COUNTB2") {
98field(SCAN, "1 second")
99}
100

101

102record(calcout, "PANDAHYP:BBB2:COUNTN2") {
103field(SCAN, "1 second")
104field(INPA, "PANDAHYP:BBB2:COUNTF2 CA")
105field(INPB, "PANDAHYP:BBB2:COUNTB2 CA")
106field(CALC, "A-B")
107}
108

109

110####RESET for CSS####
111record(bo, "PANDAHYP:BBB2:RESET") {
112field(DTYP, "devgpio")

34

A P P E N D I X

113field(OUT, "@P8_16 H ")
114field(ZNAM, "on")
115field(ONAM, "off")
116}
117

118record(bo, "PANDAHYP:BBB2:RESET2") {
119field(DTYP, "devgpio")
120field(OUT, "@P8_18 H ")
121field(ZNAM, "on")
122field(ONAM, "off")
123}

The following script shows the program for the state machine. It includes all
states for the motor control and a reset state that can be controlled via CSS.

Code 7.2: Code for SNL state machine

1program sncprepioc
2int F1;
3assign F1 to "PANDAHYP:BBB2:PMF1";
4monitor F1;
5int B1;
6assign B1 to "PANDAHYP:BBB2:PMB1";
7monitor B1;
8int V1;
9assign V1 to "PANDAHYP:BBB2:CSSF1";
10monitor V1;
11int R1;
12assign R1 to "PANDAHYP:BBB2:CSSB1";
13monitor R1;
14float T1;
15assign T1 to "PANDAHYP:BBB2:DELAY1";
16monitor T1;
17int i1=1;
18int a1=1;
19int A1;
20assign A1 to "PANDAHYP:BBB2:STEPS1";
21monitor A1;
22int C1;
23assign C1 to "PANDAHYP:BBB2:COUNTF1";
24monitor C1;
25int D1;
26assign D1 to "PANDAHYP:BBB2:COUNTB1";
27monitor D1;
28int H1;
29assign H1 to "PANDAHYP:BBB2:RESET";
30monitor H1;
31int E1=1;
32int Z1=1;
33int F2;
34assign F2 to "PANDAHYP:BBB2:PMF2";
35monitor F2;
36int B2;
37assign B2 to "PANDAHYP:BBB2:PMB2";
38monitor B2;
39int V2;
40assign V2 to "PANDAHYP:BBB2:CSSF2";

35

A P P E N D I X

41monitor V2;
42int R2;
43assign R2 to "PANDAHYP:BBB2:CSSB2";
44monitor R2;
45float T2;
46assign T2 to "PANDAHYP:BBB2:DELAY2";
47monitor T2;
48int i2=1;
49int a2=1;
50int A2;
51assign A2 to "PANDAHYP:BBB2:STEPS2";
52monitor A2;
53int C2;
54assign C2 to "PANDAHYP:BBB2:COUNTF2";
55monitor C2;
56int D2;
57assign D2 to "PANDAHYP:BBB2:COUNTB2";
58monitor D2;
59int H2;
60assign H2 to "PANDAHYP:BBB2:RESET2";
61monitor H2;
62int E2=1;
63int Z2=1;
64int CN1;
65assign CN1 to "PANDAHYP:BBB2:COUNTN1";
66monitor CN1;
67int CN2;
68assign CN2 to "PANDAHYP:BBB2:COUNTN2";
69monitor CN2;
70

71

72

73

74ss ssF1 {
75

76state low {
77when (V1 != 0 && delay(1) && CN2 == 0) {
78C1=E1;
79pvPut(C1);
80E1++;
81printf("V1 = 1\n");
82if(i1 < A1) {
83printf("if i < A\n");
84F1=1;
85pvPut(F1);
86i1++;
87}
88

89else {
90printf("else i=A\n");
91F1=1;
92pvPut(F1);
93V1 = 0;
94pvPut(V1);
95i1=1;
96}
97} state high

36

A P P E N D I X

98}
99

100state high {
101when (delay(T1)) {
102printf("Motor 1F Stopped\n");
103F1 = 0;
104pvPut(F1);
105} state low
106}
107}
108

109

110ss ssB1 {
111

112state low {
113when (R1 != 0 && delay(1)) {
114D1=Z1;
115pvPut(D1);
116Z1++;
117printf("R1 = 1\n");
118if(a1 < A1) {
119printf("if a < A\n");
120B1=1;
121pvPut(B1);
122a1++;
123}
124

125else {
126printf("else a=A\n");
127B1=1;
128pvPut(B1);
129R1 = 0;
130pvPut(R1);
131a1=1;
132}
133} state high
134}
135

136state high {
137when (delay(T1)) {
138printf("Motor 1B Stopped\n");
139B1 = 0;
140pvPut(B1);
141} state low
142}
143}
144

145

146ss ssF2 {
147

148state low {
149when (V2 != 0 && delay(1) && CN1 == 0) {
150C2=E2;
151pvPut(C2);
152E2++;
153printf("V2 = 1\n");
154if(i2 < A2) {

37

A P P E N D I X

155printf("if i2 < A2\n");
156F2=1;
157pvPut(F2);
158i2++;
159}
160

161else {
162printf("else i2=A2\n");
163F2=1;
164pvPut(F2);
165V2 = 0;
166pvPut(V2);
167i2=1;
168}
169} state high
170}
171

172state high {
173when (delay(T2)) {
174printf("Motor 2F Stopped\n");
175F2 = 0;
176pvPut(F2);
177} state low
178}
179}
180

181ss ssB2 {
182

183state low {
184when (R2 != 0 && delay(1)) {
185D2=Z2;
186pvPut(D2);
187Z2++;
188printf("R2 = 1\n");
189if(a2 < A2) {
190printf("if a2 < A2\n");
191B2=1;
192pvPut(B2);
193a2++;
194}
195

196else {
197printf("else a2=A2\n");
198B2=1;
199pvPut(B2);
200R2 = 0;
201pvPut(R2);
202a2=1;
203}
204} state high
205}
206

207state high {
208when (delay(T2)) {
209printf("Motor 2B Stopped\n");
210B2 = 0;
211pvPut(B2);

38

A P P E N D I X

212} state low
213}
214}
215

216

217ss ssR {
218state reset {
219when (H1 != 0) {
220B1 = 1;
221pvPut(B1);
222E1=1;
223Z1=1;
224D1=0;
225pvPut(D1);
226C1=0;
227pvPut(C1);
228B2 = 1;
229pvPut(B2);
230E2=1;
231Z2=1;
232D2=0;
233pvPut(D2);
234C2=0;
235pvPut(C2);
236} state finish
237}
238state finish {
239when (delay(0.5)) {
240B1 = 0;
241pvPut(B1);
242H1 = 0;
243pvPut(H1);
244B2 = 0;
245pvPut(B2);
246H2 = 0;
247pvPut(H2);
248} state reset
249}
250}

39

A P P E N D I X

This is the start up script for EPICS. It includes the link to the database that
is to be loaded. It is possible to have different databases and use them for
different applications.

Code 7.3: Start up script for EPICS

1#!../../bin/linux-arm/prepioc
2

3## You may have to change prepioc to something else
4## everywhere it appears in this file
5

6#< envPaths
7

8## Register all support components
9dbLoadDatabase("../../dbd/prepiocNew.dbd",0,0)
10

11prepioc_registerRecordDeviceDriver(pdbbase)
12## Configure devgpio driver
13GpioConstConfigure("BEAGLEBONE BLACK")
14

15## Load record instances
16#dbLoadRecords("../../db/prepiocNew.db","user=rausch,DIRECTION

=F,NUMBER=1,PIN=P8_8")
17dbLoadTemplate("../../db/prepiocNew.sub")
18iocInit()
19

20## Start any sequence programs
21seq sncprepioc,"user=rausch"

40

L I S T O F F I G U R E S

Figure 1 GSI and FAIR facilitiy in Darmstadt 5
Figure 2 Production process of the hypernuclear experiment 6
Figure 3 Experimental setup 7
Figure 5 Target chamber 9
Figure 6 PiezoWave 10
Figure 7 Sketch of the essential parts of the PiezoWave 11
Figure 8 Schematic of the functionality of the PiezoWave 11
Figure 9 Electrical interpretation of the piezo motors 12
Figure 10 Typical phase voltages for the motors 13
Figure 11 Piezo elements with movement direction 13
Figure 12 Prototype setup 15
Figure 13 Prototype block diagram 16
Figure 14 BeagleBone Black 16
Figure 15 Single state transition diagram 20
Figure 16 Complete state transition diagram 21
Figure 17 CSS GUI 24
Figure 18 Pixel calibration 27
Figure 19 Overlay of start and ending positions of the motors 27
Figure 20 Oscilloscope measurements for 10ms 29
Figure 21 Oscilloscope measurements for 1 · 10−3ms 30
Figure 22 Compact driver 32
Figure 23 Toggletime 1ms 32

41

L I S T O F TA B L E S

Table 1 Typical motor characteristics [4] 12
Table 2 Length of the motor driven for different delay times. 28

42

B I B L I O G R A P H Y

[1] P̄ANDA COLLABORATION: Technical Progress Report for: P̄ANDA.
February 2005

[2] MARCELL STEINEN: The germanium detector array for the hypernuclear
experiment at PANDA, Johannes Gutenberg-Universität Mainz, Diss.,
2016. – in preparation

[3] SEBASTIAN BLESER: The target system for the hypernuclear experiment
at PANDA, Johannes Gutenberg-Universität Mainz, Diss., 2016. – in
preparation

[4] PIEZOMOTOR: PiezoWave Linear 0.1 N, 2015

[5] PIEZOMOTOR: Datasheets

[6] PIEZOMOTOR: PiezoWave Demokit Preliminary Data 20060601, 2015

[7] BEAGLEBONE BLACK element14: System Reference Manual for Beagle-
Bone Black

[8] FELDBAUER, Florian: Summary of EPICS Workshop and Hands-On Tu-
torial. 2015

[9] EPICS REFERENCE MANUAL: https://wiki-ext.aps.anl.
gov/epics/index.php/RRM_3-14

[10] KOZUBAL, Andy: State Notation Language and Sequencer Users Guide.
http://www.aps.anl.gov/epics/EpicsDocumentation/
AppDevManuals/Sequencer/snl_1.9_man

[11] Control System Studio. http://controlsystemstudio.org/

43

https://wiki-ext.aps.anl.gov/epics/index.php/RRM_3-14
https://wiki-ext.aps.anl.gov/epics/index.php/RRM_3-14
http://www.aps.anl.gov/epics/EpicsDocumentation/AppDevManuals/Sequencer/snl_1.9_man
http://www.aps.anl.gov/epics/EpicsDocumentation/AppDevManuals/Sequencer/snl_1.9_man
http://controlsystemstudio.org/

DA N K S AG U N G

Zu aller erst möchte ich mich bei Josef Pochodzalla, für seine Vorlesung zur
Signalverarbeitung und der Möglichkeit eine Bachelorarbeit zu schreiben, be-
danken. Als zweites möchte ich Frank Maas dafür danken, dass er sich als
zweiten Gutachter bereit erklärt hat.
Insbesondere danke ich Marcell Steinen für die herausragende Betreuung
während meiner Arbeit. Vielen Dank auch an die Arbeitsgruppe von Herrn
Pochodzalla und Sebastian Bleser, der mich der Arbeitsgruppe vorgestellt hat.
Daneben danke ich auch Florian Feldbauer für seine Hilfe bezüglich EPICS.
Zu allerletzt danke ich meiner Familie, Freunden und meiner Freundin Lisa für
die Unterstützung während des gesamten Studiums.

44

D E U T S C H E Z U S A M M E N FA S S U N G

Thema dieser Bachelorarbeit ist die Entwicklung eines Steuerungssystems für
das primäre Target des PANDA Hyperkern Experiments.
Die Steuerung basiert auf einer EPICS Umgebung und der zugehörigen State
Notation Language (SNL). Das primäre Target wird auf Piezo Motoren mon-
tiert und über ein Compact-Board mit einem BeagleBone Black Mikrokontroller
verbunden. Für das PANDA Hyperkern Experiment ist es vorgesehen die
Steuerung in die ECLIPSE basierende Software Control System Studio (CSS)
zu implementieren. Mit Hilfe von CSS wird ein Graphical User Interface erstellt,
das es ermöglicht die Motoren zu positionieren und welches über momentane
Positionen der Motoren Rückmeldung gibt.
Genauere Untersuchungen des entwickelten Kontrollsystems ergeben, dass
das aktuelle System in der Schrittweite der Piezo Motoren limitiert ist. Bed-
ingt durch den BeagleBone Black ist es nicht möglich die Motoren weniger als
0.17mm pro Schritt zu fahren. Für einkommende Befehle benötigt der Mikro-
controller ungefähr 1.2ms um diese zu verarbeiten. Somit ist es nicht möglich
Befehlsänderungen in einem Intervall von weniger als 1.2ms ausführen zu
lassen. Innerhalb dieser Zeit kann der Motor nicht an und aus geschaltet wer-
den. Damit kann die Länge eines Schritts nicht weiter verringert werden.
Dies erfüllt nicht die Anforderungen des Hyperkern Experiments, da während
einer Messung eine konstane Luminostät benötigt wird und daher eine weitaus
präzisere Positionierung nötig ist. Mit Hilfe eines separaten Mikrocontrollers ist
es möglich eine präzisere Positionierung zu erreichen. Die für die Steuerung
nötige Software könnte auf dem BeagleBone Black ablaufen, während der
zweite Mikrocontroller über eine serielle Schnittstelle mit diesem verbunden
ist und somit Rechenzeit des Kernels eingespart werden kann.

45

	Introduction
	The PANDA hypernuclear experiment
	Experimental Setup

	PIEZO MOTORS
	Control System
	Prototype setup
	BeagleBone

	Software
	EPICS
	State Notation Language
	Control System Studio

	Performance of the Control System
	Summary and Outlook
	appendix

