Laboratory searches for the origin of dark matter

Victor Flambaum attains GRC-Fellowship with the Helmholtz-Institute Mainz
01.03.2016
Source: private

The Gutenberg Research College (GRC) of Johannes Gutenberg University Mainz (JGU) is designed to sharpen the research profile of JGU and its faculties by attracting excellent scientists to carry out their research in Mainz.

In this context, Prof. Victor Flambaum, Head of the Department of Theoretical Physics of the University of New South Wales, Australia, is granted a fellowship for three years and will establish a small research group in Mainz
Prof. Dmitry Budker, leader of the HIM „Matter-AntiMatter asymmetry“ (MAM) Section, recommended Professor Flambaum’ s expertise to  the GRC: „Victor Flambaum is one of the brightest stars in theoretical physics today and one of the rare theorists closely connected to experiments.“

HIM welcomes guest scientist Dr. Miroslav Iliaš at SHE Chemie

25.2.2016
Source: private

Miroslav Iliaš, PhD. is working in the field of development and applications of methods of relativistic quantum chemistry in the framework of the DIRAC program suite.

In his stay at the SHE-Section at the GSI Institute from February 2016 till January 2017 he is performing relativistic quantum chemical calculation on carbonyls of heavy and superheavy elements with the aim to interpret experimental data.

Hochpräzise Experimente erlauben detaillierte Aussage über das Kernverhalten in hochgeladenen Ionen

Pressemitteilung der GSI vom 18.1.2016
Foto: Prof. Block am Experimentaufbau SHIPTRAP bei der GSI, G. Otto, GSI

In hochpräzisen Messungen am GSI Helmholtzzentrum für Schwerionenforschung und der Universität Mainz ist einem internationalen Team von Wissenschaftlern ein präziser Test der sogenannten Quantenelektrodynamik gebundener Zustände (BS-QED) gelungen. Dabei wurden erstmals Effekte, die aus der Bewegung des Atomkerns resultieren, berücksichtigt. Die Ergebnisse erweitern wesentlich unser Verständnis über die Wechselwirkung zwischen Elektronen und Atomkernen. Die Wissenschaftler haben einen aktuellen Beitrag in der Fachzeitschrift Nature Communications veröffentlicht.

Last known magic neutron number weakens in heavy elements

An international team of scientists has succeeded to create and detect extremely short-lived atomic nuclei of the element uranium.
Picture: J. Khuyagbaatar / HIM&GSI

An international team of scientists has succeeded to create and detect extremely short-lived atomic nuclei of the element uranium. Having far fewer neutrons than the kind of uranium nuclei found in nature, they exist only for about a millionth of a second. The new data provide key information on how the numbers of neutrons and protons inside exotic heavy nuclei influence their stability. This is important to give better guidance for experiments on the search for new superheavy elements.

Seiten

Helmholtz-Institut Mainz RSS abonnieren